【趨勢概要】馮諾伊曼架構的存儲和計算分離,已經不適合數據驅動的
人工智能應用需求。頻繁的數據搬運導致的算力瓶頸以及功耗瓶頸已經成為對更先進算法探索的限制因素。類似于腦神經結構的存內計算架構將數據存儲單元和計算單元融合為一體,能顯著減少數據搬運,極大提高計算并行度和能效。計算存儲一體化在硬件架構方面的革新,將突破AI算力瓶頸。
版權申明:本內容來自于互聯網,屬第三方匯集推薦平臺。本文的版權歸原作者所有,文章言論不代表鏈門戶的觀點,鏈門戶不承擔任何法律責任。如有侵權請聯系QQ:3341927519進行反饋。